
PyCTD Documentation
Release 0.5.10-dev

Christian Ebeling

Oct 06, 2022

Contents

1 Installation 3
1.1 System requirements . 3
1.2 Supported Databases . 3
1.3 Install Software . 4
1.4 Database Setup . 4
1.5 Database Configuration . 5

2 Quick start 7

3 Comparative Toxicogenomics Database 9
3.1 About . 9
3.2 Links . 9

4 Query 11
4.1 Examples . 11
4.2 Query Manager Reference . 11

5 Data Manager Reference 13
5.1 Database Manager . 13
5.2 Database Models . 13

6 Benchmarks 15
6.1 MySQL/MariaDB . 15

7 Roadmap 17

8 Technology 19
8.1 Versioning . 19
8.2 Testing in PyCTD . 19
8.3 Distribution . 20

9 Acknowledgment and contribution to scientific projects 21

10 Indices and Tables 23

i

ii

PyCTD Documentation, Release 0.5.10-dev

for version: 0.5.10

pyctd is Python software developed by the Department of Bioinformatics at the Fraunhofer Institute for Algorithms
and Scientific Computing (SCAI) to programmatically access and analyze data provided by the Comparative Toxi-
cogenomics Database. For more information about CTD go to section CTD About .

The content of CTD and the use of PyCTD in combination with PyBEL facilitates scientists in the IMI funded projects
AETIONOMY and PHAGO in the identification of potential drug targets in complex disease networks, which contain
several thousands of relationships encoded as BEL statements.

The main aim of this software is to provide a programmatic access to locally stored CTD data and allow a filtered
export in several formats used in the scientific community. We also focus our software development on the analysis
and extension of biological disease knowledge networks. PyCTD is an ongoing project and needs further development
as well as improvement. Please contact us, if you would like to support PyCTD or are interested in a scientific
collaboration.

Fig. 1: ER model of pyctd database

• supported by IMI, AETIONOMY, PHAGO.

Contents 1

https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics.html
https://www.scai.fraunhofer.de/en.html
http://ctdbase.org
http://ctdbase.org
https://pyctd.readthedocs.io/en/latest/
https://www.imi.europa.eu/
http://www.aetionomy.eu/
https://www.imi.europa.eu/content/phago
http://openbel.org/
_images/all.png
https://www.imi.europa.eu/
http://www.aetionomy.eu/
https://www.imi.europa.eu/content/phago
pageapplet/index.html
pageapplet/index.html
pageapplet/index.html

PyCTD Documentation, Release 0.5.10-dev

2 Contents

CHAPTER 1

Installation

1.1 System requirements

Because of the rich content of CTD PyCTD will create more than 230 million rows (04-28-017) with ~14 GiB of disk
storage (depending on the used RDMS).

Tests were performed on Ubuntu 16.04, 4 x Intel Core i7-6560U CPU @ 2.20Ghz with 16 GiB of RAM. In general
PyCTD should work also on other systems like Windows, other Linux distributions or Mac OS.

1.2 Supported Databases

PyCTD uses SQLAlchemy to cover a wide spectrum of RDMSs (relational database management system). We rec-
comend MySQL or MariaDB for best performance. If you cannot install software on your system, SQLite - which
needs no further installation - also works.

The following RDMSs are supported by SQLAlchemy:

1. Firebird

2. Microsoft SQL Server

3. MySQL / MariaDB

4. Oracle

5. PostgreSQL

6. SQLite

7. Sybase

3

http://sqlalchemy.readthedocs.io
https://mariadb.org/

PyCTD Documentation, Release 0.5.10-dev

1.3 Install Software

pyctd provides a simple API so bioinformaticians and scientists with limited programming knowledge can easily
use it to interface with CTD between chemical–gene/protein interactions, chemical–disease and gene–disease rela-
tionships.

1.3.1 Easiest

Download the latest stable code from PyPI with:

$ python3 -m pip install pyctd

1.3.2 Get the Latest

Download the most recent code from GitHub with:

$ python3 -m pip install git+https://github.com/pyctd/pyctd.git

1.3.3 For Developers

Clone the repository from GitHub and install in editable mode with:

$ git clone https://github.com/pyctd/pyctd.git
$ cd pyctd
$ python3 -m pip install -e .

1.4 Database Setup

1.4.1 MySQL/MariaDB setup

Log in MySQL as root user and create a new database, create a user, assign the rights and flush privileges.

CREATE DATABASE pyctd CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON pyctd.* TO 'pyctd_user'@'%' IDENTIFIED BY 'pyctd_passwd';
FLUSH PRIVILEGES;

Start a python shell and set the MySQL configuration. If you have not changed anything in the SQL statements . . .

>>> import pyctd
>>> pyctd.set_mysql_connection()

If you have used you own settings, please adapt the following command to you requirements.

>>> import pyctd
>>> pyctd.set_mysql_connection()
>>> pyctd.set_mysql_connection(host='localhost', user='pyctd_user', passwd='pyctd_
→˓passwd', db='pyctd')

4 Chapter 1. Installation

https://pypi.python.org/pypi/pyctd
https://github.com/cebel/pyctd
https://github.com/cebel/pyctd

PyCTD Documentation, Release 0.5.10-dev

1.4.2 Updating

The updating process will download the files provided by the CTD on the download page

Warning: Please note the download needs 1.5 GB and the update takes ~2 hours (depending on your system)

>>> import pyctd
>>> pyctd.update()

1.5 Database Configuration

Following functions allow to change the connection to you RDBMS (relational database management system). Next
time you will use pyctd by default this connection will be used.

To set a new MySQL/MariaDB connection . . .

import pyctd
pyctd.set_mysql_connection()
pyctd.set_mysql_connection(host='localhost', user='pyctd_user', password='pyctd_passwd
→˓', db='pyctd')

To set connection to other database systems use the pyctd.set_connection function.

For more information about connection strings go to the SQLAlchemy documentation.

Examples for valid connection strings are:

• mysql+pymysql://user:passwd@localhost/database?charset=utf8

• postgresql://scott:tiger@localhost/mydatabase

• mssql+pyodbc://user:passwd@database

• oracle://user:passwd@127.0.0.1:1521/database

• Linux: sqlite:////absolute/path/to/database.db

• Windows: sqlite:///C:\path\to\database.db

import pyctd
pyctd.set_connection('oracle://user:passwd@127.0.0.1:1521/database')

1.5. Database Configuration 5

http://ctdbase.org/downloads/
http://docs.sqlalchemy.org/en/latest/core/engines.html

PyCTD Documentation, Release 0.5.10-dev

6 Chapter 1. Installation

CHAPTER 2

Quick start

This guide helps you to quickly setup your system in several minutes. But running the database import process and
indexing takes still several hours.

Note: If your colleague have already executed the import process (perhaps on a special database server) please request
the connection data to use PyCTD without the need of running the update process.

Please make sure you have installed

1. MariaDB or any other supported RDMS Supported Databases

2. Python3

Please note that you can also install with pip even if you are have no root rights on your machine. Just add –user
behind install.

>>> python3 -m pip install pyctd

Make sure that you have access to a database with user name and correct permissions. Otherwise execute on the
MariaDB or MySQL console the flowing command as root. Replace user name, password and servername (here
localhost) to our needs:

CREATE DATABASE `pyctd` CHARACTER SET utf8 COLLATE utf8_general_ci;
CREATE USER 'pyctd_user'@'localhost' IDENTIFIED BY 'pyctd_passwd';
GRANT ALL PRIVILEGES ON pytcd.* TO 'pyctd_user'@'localhost';
FLUSH PRIVILEGES;

Import CTD data into database, but before change the SQLAlchemy connection string (line 2) to allow a connection
to the database. If you have used the default code block and don’t have to change anything.

Start your python console:

$ python3

Import the data:

7

https://mariadb.org/
https://www.python.org/downloads/

PyCTD Documentation, Release 0.5.10-dev

>>> import pyctd
>>> sqlalchemy_connection_string = 'mysql+pymysql://db_user:db_pwd@server_name/db_
→˓name?charset=utf8'
>>> pyctd.update(sqlalchemy_connection_string)

For examples how to query the database go to pyctd.manager.database.Query or Tutorial

8 Chapter 2. Quick start

CHAPTER 3

Comparative Toxicogenomics Database

pyctd only provides methods to download and locally query open accessible CTD data. We want to pay tribute to
the following institutions for their amazing resource their provide to the scientific community:

1. Department of Biological Sciences, North Carolina State University

2. Department of Bioinformatics, The Mount Desert Island Biological Laboratory

3. Center for Human Health and the Environment, North Carolina State University

3.1 About

Citation from CTD website (about) [04/27/2017]: “CTD is a robust, publicly available database that aims to ad-
vance understanding about how environmental exposures affect human health. It provides manually curated in-
formation about chemical–gene/protein interactions, chemical–disease and gene–disease relationships. These
data are integrated with functional and pathway data to aid in development of hypotheses about the mechanisms
underlying environmentally influenced diseases.”

3.2 Links

Latest CTD publication:

The Comparative Toxicogenomics Database: update 2017; Nucleic Acids Res. 2017 Jan 4; 45(Database issue):
D972–D978.; Published online 2016 Sep 19. doi: 10.1093/nar/gkw838; authors: Allan Peter Davis, Cynthia J.
Grondin, Robin J. Johnson, Daniela Sciaky, Benjamin L. King, Roy McMorran, Jolene Wiegers, Thomas C. Wiegers,
and Carolyn J. Mattingly; PubMed Central (PubReader, ePub (beta), PDF)

Link to data: CTD download page

Check the CTD website for more information about data and online tools

9

http://ctdbase.org
https://bio.sciences.ncsu.edu/
https://mdibl.org/
https://chhe.research.ncsu.edu/
http://ctdbase.org/about/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210612/
https://www.ncbi.nlm.nih.gov/pubmed/27651457
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210612/?report=reader
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210612/epub/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210612/pdf/gkw838.pdf
http://ctdbase.org/downloads/
http://ctdbase.org

PyCTD Documentation, Release 0.5.10-dev

10 Chapter 3. Comparative Toxicogenomics Database

CHAPTER 4

Query

4.1 Examples

For most of the string parameters you can use % as wildcard (please check the documentation below). All methods
have a parameter limit which allows to limit the number of results and as_df which allows to return a pan-
das.DataFrame.

4.1.1 Methods

>>> import pyctd
>>> q = pyctd.query()
>>> q.get_diseases(disease_id='MESH:D000544', definition='%degenerative%')
>>> q.get_genes(gene_symbol='TSP_15922', uniprot_id='E5T972')
>>> q.get_pathways(pathway_name='%bla')
>>> q.get_chemicals(chemical_name='Alz%')
>>> q.get_chem_gene_interaction_action(organism_id='9606', gene_symbol='APP')
>>> q.get_gene__diseases(limit=10)

4.1.2 Properties

>>> import pyctd
>>> q = pyctd.query()
>>> q.gene_forms
>>> q.interaction_actions
>>> q.actions
>>> q.pathways

4.2 Query Manager Reference

11

PyCTD Documentation, Release 0.5.10-dev

12 Chapter 4. Query

CHAPTER 5

Data Manager Reference

5.1 Database Manager

5.2 Database Models

Not all database models are documented here in order to keep the documentation simple. In general Query should be
used to query the content of the database

13

PyCTD Documentation, Release 0.5.10-dev

14 Chapter 5. Data Manager Reference

CHAPTER 6

Benchmarks

All benchmarks created on a standard notebook:

• OS: Linux Ubuntu 16.04.2 LTS (xenial)

• Python: 3.5.2

• Hardware: x86_64, Intel(R) Core(TM) i7-6560U CPU @ 2.20GHz, 4 CPUs, Mem 16Gb

6.1 MySQL/MariaDB

Database created with following command in MySQL/MariaDB as root:

CREATE DATABASE mydatabase CHARACTER SET utf8 COLLATE utf8_general_ci;

User created with following command in MySQL/MariaDB:

GRANT ALL PRIVILEGES ON pyctd.* TO 'pyctd_user'@'%' IDENTIFIED BY 'pyctd_passwd';
FLUSH PRIVILEGES;

Import of CTD data executed with:

import pyctd
pyctd.set_mysql_connection()
pyctd.update()

• CPU times: user 2h 2min 20s, sys: 37.7 s, total: 2h 2min 58s

15

PyCTD Documentation, Release 0.5.10-dev

16 Chapter 6. Benchmarks

CHAPTER 7

Roadmap

Next steps:

• Functions to identify potential drugs in BEL disease pathways

• mapping of interaction_action CTD and BEL relationships

• flask restful API

• Implement more query functions

• Export of query results to different formats

• Test for all supported Supported Databases

• Improve documentation and tutorials

• Increase code coverage

• Collections of Jupyter notebooks with examples

17

http://openbel.org/
http://openbel.org/language/version_2.0/bel_specification_version_2.0.html#_bel_relationships
https://en.wikipedia.org/wiki/Code_coverage
http://jupyter.org/

PyCTD Documentation, Release 0.5.10-dev

18 Chapter 7. Roadmap

CHAPTER 8

Technology

This page is meant to describe the development stack for PyCTD, and should be a useful introduction for contributors.

8.1 Versioning

PyCTD is kept under version control on GitHub. This allows for changes in the software to be tracked over time, and
for tight integration of the management aspect of software development. Code will be in future produced following the
Git Flow philosophy, which means that new features are coded in branches off of the development branch and merged
after they are triaged. Finally, develop is merged into master for releases. If there are bugs in releases that need to be
fixed quickly, “hot fix” branches from master can be made, then merged back to master and develop after fixing the
problem.

8.2 Testing in PyCTD

PyCTD is written with unit testing. Whenever possible, PyCTD will prefers to practice test- driven development. This
means that new ideas for functions and features are encoded as blank classes/functions and directly writing tests for
the desired output. After tests have been written that define how the code should work, the implementation can be
written.

Test-driven development requires us to think about design before making quick and dirty implementations. This
results in better code. Additionally, thorough testing suites make it possible to catch when changes break existing
functionality.

Tests are written with the standard unittest library.

8.2.1 Tox

While IDEs like PyCharm provide excellent testing tools, they are not programmatic. Tox is python package that
provides a CLI interface to run automated testing procedures (as well as other build functions, that aren’t important
to explain here). In PyBEL, it is used to run the unit tests in the tests folder with the py.test harness. It also

19

https://tox.readthedocs.io/en/latest/

PyCTD Documentation, Release 0.5.10-dev

runs check-manifest, builds the documentation with sphinx, and computes the code coverage of the tests. The
entire procedure is defined in tox.ini. Tox also allows test to be done on many different versions of Python.

8.2.2 Continuous Integration

Continuous integration is a philosophy of automatically testing code as it changes. PyCTD makes use of the Travis
CI server to perform testing because of its tight integration with GitHub. Travis automatically installs git hooks inside
GitHub so it knows when a new commit is made. Upon each commit, Travis downloads the newest commit from
GitHub and runs the tests configured in the .travis.yml file in the top level of the PyCTD repository. This file
effectively instructs the Travis CI server to run Tox. It also allows for the modification of the environment variables.
This is used in PyCTD to test many different versions of python.

8.2.3 Code Coverage

Is not implemented in the moment, but will be added in the next months.

8.3 Distribution

8.3.1 Versioning

PyCTD tries to follow in future the following philosophy:

PyCTD uses semantic versioning. In general, the project’s version string will has a suffix -dev like in 0.3.4-dev
throughout the development cycle. After code is merged from feature branches to develop and it is time to deploy, this
suffix is removed and develop branch is merged into master.

The version string appears in multiple places throughout the project, so BumpVersion is used to automate the updating
of these version strings. See .bumpversion.cfg for more information.

8.3.2 Deployment

Code for PyCTD is open-source on GitHub, but it is also distributed on the PyPI (pronounced Py-Pee-Eye) server.
Travis CI has a wonderful integration with PyPI, so any time a tag is made on the master branch (and also assuming
the tests pass), a new distribution is packed and sent to PyPI. Refer to the “deploy” section at the bottom of the .
travis.yml file for more information, or the Travis CI PyPI deployment documentation. As a side note, Travis CI
has an encryption tool so the password for the PyPI account can be displayed publicly on GitHub. Travis decrypts it
before performing the upload to PyPI.

20 Chapter 8. Technology

https://docs.travis-ci.com/user/deployment/pypi/

CHAPTER 9

Acknowledgment and contribution to scientific projects

Software development by:

• Christian Ebeling

• Andrej Kontopez

• Charles Hoyt

The software development of PyCTD at Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) is sup-
ported and funded by the IMI (INNOVATIVE MEDICINES INITIATIVE) projects AETIONOMY and PHAGO. The
aim of both projects is the identification of mechanisms in Alzheimer’s and Parkinson’s disease for drug development
through creation and analysis of complex biological BEL networks.

21

https://www.scai.fraunhofer.de/de/ueber-uns/mitarbeiter/ebeling.html
https://www.imi.europa.eu/
http://www.aetionomy.eu/
https://www.imi.europa.eu/content/phago
http://openbel.org/

PyCTD Documentation, Release 0.5.10-dev

22 Chapter 9. Acknowledgment and contribution to scientific projects

CHAPTER 10

Indices and Tables

• genindex

• modindex

• search

23

	Installation
	System requirements
	Supported Databases
	Install Software
	Database Setup
	Database Configuration

	Quick start
	Comparative Toxicogenomics Database
	About
	Links

	Query
	Examples
	Query Manager Reference

	Data Manager Reference
	Database Manager
	Database Models

	Benchmarks
	MySQL/MariaDB

	Roadmap
	Technology
	Versioning
	Testing in PyCTD
	Distribution

	Acknowledgment and contribution to scientific projects
	Indices and Tables

